The Screed Design with Pumice and Perlite Components in Zero Energy Building Targets

Authors

DOI:

https://doi.org/10.5281/zenodo.8200989

Keywords:

Pumice, Expanded perlite, Screed, Flooring, Zero energy

Abstract

In this study, it is aimed to design a screed type using pumice-stone and expanded-perlite materials towards zero energy building goals. For this purpose, a screed type produced with river sand was produced for screed, which will represent the traditional screed type used today and will represent your control sample in our study. Then, 8 different mixtures containing pumice stone and expanded perlite materials were produced. After a 28-day curing process, nine different screed samples underwent engineering property tests: ultrasonic pulse velocity (UPV), compressive strength, and thermal conductivity. The control series showed the highest UPV value at 3797.2 m/s, followed closely by pumice BR-3 at 3713.1 m/s. BR-3 also outperformed the control series in compressive strength (12.76 N/mm2), while perlite series BR-7 (1.68 N/mm2) and BR-8 (0.96 N/mm2) had the lowest values. In thermal conductivity, the control sample had the highest value (0.441 W/m.K), with pumice BR-4 (0.436 W/m.K) and BR-2 (0.304 W/m.K) close behind, and perlite series BR-7 (0.191 W/m.K) and BR-8 (0.105 W/m.K) having the lowest values. Using pumice and expanded perlite as screed materials offers improved sound and thermal conductivity results compared to traditional screed. However, expanded perlite leads to a significant decrease in compressive strength. Incorporating these alternatives has the potential to reduce building weight and enhance heat and sound insulation properties.

References

Doğangün A. 2016. Betonarme Yapıların Hesap ve Tasarımı. Birsen Yayınevi, 4s. İstanbul.

Erdoğan T. 2003. Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim AŞ, 6s. Ankara.

T.C. Milli Eğitim Bakanlığı. 2012. Tesviye Betonu ve Şap. T.C. Milli Eğitim Bakanlığı, 3-29s. Ankara.

Varol O. O. 2016. Bitlis ve Van İllerinde Pomza Madenciliğine Genel Bir Bakış, Bilimsel Madencilik Dergisi, 55(3): 27-34.

Rashad A. M. 2019. A Short Manual on Natural Pumice as A Lightweight Aggegate, Journal of Building Engineering, 25:100802.

Soleimani H., Mahvi A. H., Yaghmaeian K., Abbasnia A., Sharafi K., Alimohammadi M., Zamanzadeh M. 2019. Effect Of Modification By five Different Acids on Pumice Stone As Natural And Low-Cost Adsorbend For Removal Of Humic Acid From Aqueous Solutions-Aplications Of Response Surface Methodology, Journal Of Molecular Liquids, 290:111181.

Özkan Ş. G., Tuncer G. 2001. Pomza Madenciliğine Genel Bir Bakış, 4. Endüstriyel Hammaddeler Sempozyumu, pp200-207,18-19 Ekim, İzmir.

Bozkurt N., Taşkın V. 2017. Design of Self Compacting Lightweight Concrete Using Acidic Pumice with Different Powder Materials, Acta Physıca Polonıca A, 132(3):779-782.

Orhun O. 1969. Perlit, Bilimsel Madencilik Dergisi, 8(4): 213-222.

Oliveira A. G., Jandorno J. C., Rocha E. B. D., Sousa A. M. F., Silva A. L. N. 2019. Evaluation Of Expanded Perlite Behavior İn PS/Perlite Composites, Applied Clay Science, 181: 105223.

Raji M., Nekhlaoui S., El Amrani El Hassani İ., Essassi E. M., Essabir H., Rodrigue D., Bouhfid R., Qaiss A. 2019. Utilization Of Volcanic Amorphous Aluminosilicate Rocks (Perlite) As Alternative Materials İn Lightweight Composites, Composites Part B, 165:47-54.

Gündüz L., Şapçı N., Bekar M. 2006. Bimsbetonların Genleştirilmiş Perlit Agregalar İle Teknik Özelliklerinin İyileştirilmesi Üzerine Teknik Bir Analiz, IV.Ulusal Kırmataş Sempozyumu, 2-4 Aralık, İstanbul.

Güner M. S. 2012. Beton Teknolojisi. Aktif Yayın Evi, 398s. İstanbul.

TS EN 1354, 2007. Gözenekli Hafif Beton – Basınç Dayanımının Tayini. Türk Standartları Enstitüsü, Ankara.

TS EN 12390-4, 2019. Beton – Sertleşmiş Beton Deneyleri – Bölüm 4: Basınç Dayanımı – Deney Makinelerinin Özellikleri. Türk Standartları Enstitüsü, Ankara.

Zebari Z., Bedirhanoğlu İ., Aydın E. 2016. Beton Basınç Dayanımının Ultrasonik Ses Dalgası Yayılma Hızı İle Tahmin Edilmesi, Mühendislik Dergisi, 8(1): 43-52.

Devecioğlu A.G, Biçer Y,2012. Genleştirilmiş Kil Agregalı Betonların Isıl Özelliklerinin İncelenmesi. Dicle Üniversitesi Mühendsilik Fakültesi Mühendislik Dergisi, 3(2):75-81.

Rochholz J. M.1979. Determination Of The Elastic Properties Of Lightweight Aggregate By Ultrasonic Pulse Velocity Measurement, İnternational Journal Of Cement Composites And Lightweight Concrete, 1(2):87-90.

Solis R., Moreno E. I. 2008. Evaluation Of Concrete Made With Crushed Limestone Aggregate Based On Ultrasonic Pulse Velocity, Construction BuildingMaterials, 22(6):1225-1231.

Güçlüler K. 2020. Investigation Of The Effects Of Aggregate Textural Properties On Compressive Strength (CS) And Ultrasonic Pulse Velocity (UPV) Of Concrete, Journal Of Building Engineering, 27:100949.

Yazıcıoğlu S., Bozkurt N. 2006. Pomza Ve Mineral Katkılı Taşıyıcı Hafif Betonun Mekanik Özelliklerinin Araştırılması, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(4):675-680.

http://www.ardex.com.tr/tr/urunler/zemin-kaplama-urunleri/ (Erişim Tarihi: 21.02.2020).

https://www.bostik.com/globalassets/countries/turkey/brochures/turkish/2yap-katalou-zemin-hazirlii.pdf (Erişim Tarihi: 21.02.2020).

https://baumit.com.tr/hizmetler/urunler-a-z?category=zemin-sistemleri (Erişim Tarihi: 21.02.2020).

http://www.kss.com.tr/urunler/hafif-hazir-sap/89 (Erişim Tarihi: 21.02.2020).

TS EN 13813,2004. Şap Malzemeleri Ve Zemine Uygulanan Şaplar - Şap Malzemeleri - Özellikler Ve Gerekler. Türk Standartları Enstitüsü, Ankara.

Published

2023-07-01

How to Cite

Bozkurt, N., & Ramazanoğlu, B. (2023). The Screed Design with Pumice and Perlite Components in Zero Energy Building Targets. ZeroBuild Journal, 1(02), 69–84. https://doi.org/10.5281/zenodo.8200989