Thermal Performance Assessment of Domestic Hot Water Tanks with PCM and Energy Efficiency Improvement Through CFD Analyses
DOI:
https://doi.org/10.5281/zenodo.18362176Keywords:
phase change material, energy efficiency, domestic hot water, thermal energy storage, computational fluid dynamicsAbstract
Energy efficiency has become increasingly critical in domestic hot water tank (DHWT) systems, as DHWT use accounts for approximately 30% of total energy consumption in buildings. Phase Change Material (PCM) integrated systems offer significant potential for improving thermal performance compared to conventional water-based storage. In this study, the charging, discharging, and heat loss behaviour of PCM-integrated DHWT were evaluated using Computational Fluid Dynamics (CFD). The results showed that adding 3 kg of paraffin-based PCM to a 300 L DHWT increased the usable hot water volume by at least 10% without significantly affecting the charging time. While the conventional tank provided usable hot water for 14.10 minutes, PCM integration extended this time by approximately 2 minutes due to the latent heat released during solidification. A heat loss analysis conducted according to the TS EN 12897+A1:2020-03 standard revealed that the conventional system showed a heat loss of 86.9 W at 55 °C, while the MP52 integrated tank reduced this value to 79.95 W after a 180-minute retention time. These findings demonstrate that combining sensible and latent heat storage reduces thermal losses, improves discharge performance, and contributes to overall energy savings. The study also offers recommendations for the future optimization of PCM-enhanced hot water systems, emphasizing improved control strategies to increase efficiency, particularly in material selection, PCM deployment, and next-generation hot water storage designs.
References
IEA (2023), Energy Efficiency 2023, IEA, Paris https://www.iea.org/reports/energy-efficiency-2023, Licence: CC BY 4.0
Energy Performance of Buildings Directive, 2024, Energy Performance of Buildings Directive
Liang, H., Niu, J., & Gan, Y. (2020). Performance optimization for shell-and-tube PCM thermal energy storage. Journal of Energy Storage, 30. https://doi.org/10.1016/j.est.2020.101421
Erdemir, D. (2020). Kapsüllenmiş Faz Değiştiren Malzemelerin Sıcak Su Tankları İçerisindeki Konumlarının Isıl Enerji Depolama Performansı Üzerindeki Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 35(3), 24-33.
Erdemir, D., & Altuntop, N., (2019). Experimental Investigation of Phase Change Material Utilization Inside the Horizontal Mantled Hot Water Tank (Accepted Paper). International Journal Of Exergy , vol.1, 1-28. https://dx.doi.org/10.1504/IJEX.2020.104722
Erdemir, D., Ozbekler, A., & Altuntop, N. (2022). Experimental investigation on the effect of the ratio of tank volume to total capsulized paraffin volume on hot water output for a mantled hot water tank. Solar Energy, 239, 294–306. https://doi.org/10.1016/j.solener.2022.05.010
Junga, R., Pospolita, J., Kabaciński, M., Sobek, S., Stanisławski, R., Mami, M. A., … Mruk, Z. (2024). Numerical modeling of heat losses from hot water storage tank. Case Studies in Thermal Engineering, 62. https://doi.org/10.1016/j.csite.2024.105146
Yildirim N., Kahraman I. & Umdu E., (2023) Exergetic Performance Assessment of Different Building Heating Systems https://doi.org/10.5281/zenodo.7487556
M. S. Büker, V. C. Güran, A. E. Onay ve H. İ. Dağ, “Thermal performance assessment and energy efficiency improvement of a domestic hot water tank with PCM,” in Proc. ULIBTK’25 Uluslararası Katılımlı 25. Isı Bilimi ve Tekniği Kongresi, Adana, Türkiye, 10-12 Eylül 2025, pp. 977-983.
Koželj, R., Mlakar, U., Zavrl, E., Stritih, U., & Stropnik, R. (2021). An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating. Energy and Buildings, 248. https://doi.org/10.1016/j.enbuild.2021.111196
Najafian, A., Haghighat, F., & Moreau, A. (2015). Integration of PCM in domestic hot water tanks: Optimization for shifting peak demand. Energy and Buildings, 106, 59–64. https://doi.org/10.1016/j.enbuild.2015.05.036
Belhadad, T., Draoui, B., & Bouabdallah, S. (2023). CFD investigation of fin design influence on phase change using ANSYS Fluent enthalpy-porosity method. Journal of Energy Storage, 62, 107361. https://doi.org/10.1016/j.prime.2023.100306
Saliby, A., Hammami, A., & Sadok, D. (2024). Experimentally based testing of the enthalpy-porosity method for the numerical simulation of phase change of paraffin-type PCMs. Journal of Building Engineering, 85, 108467. https://doi.org/10.1016/j.est.2023.107876
TS EN 12897+A1, 2020, Su temini - Dolaylı olarak ısıtılan havalandırmasız (kapalı) ısıtıcılı su depoları için özellikler, Standard Detayı
Rubitherm, Rubitherm Technologies GmbH, https://www.rubitherm.eu/produktkategorie/organische-pcm-rt (accessed Nov. 18, 2025).
Solimpeks, “Solikombi 300 Hijyenik Boyler - Serpantinli - Akümülasyon tankı - boiler,” Solimpeks Güneş Enerjisi Sistemleri | Isı Pompası - Fotovoltaik Panel - Boyler - Solar Enerji, https://www.solimpeks.com.tr/urun/solikombi-300-hijyenik-boyler/ (accessed Nov. 18, 2025).
Petroyağ, “Endüstriyel Yağlar: Petroyağ ürünler,” Endüstriyel Yağlar | Petroyağ Ürünler, https://www.petroyag.com/urunler (accessed Nov. 18, 2025).
A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numerical Heat Transfer, vol. 13, no. 3, pp. 297–318, Apr. 1988. doi:10.1080/10407788808913615
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 ZeroBuild Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.